An MGF-derivative based unified analysis of incoherent diversity reception of M-ary orthogonal signals over fading channels
نویسندگان
چکیده
Exact error probability expressions for noncoherent M-ary frequency-shift-keying (MFSK) systems that employ postdetection equal-gain diversity over Rayleigh, Rician and Nakagami-m channels are derived using a Laplace derivative formula. Both independent and generically correlated fading cases are considered. For independent fading, closed-form solutions are also derived for both Nakagami-q fading (either with identical or dissimilar fading statistics) and mixed fading cases. Previous results are shown to be specific instances of our general expressions. Additionally, a new concise, derivative formula is obtained for calculating the bit error rate of square-law detected multichannel binary differential phase-shift-keying (BDPSK) signals. All these expressions are applicable in many cases of practical interest and provide accurate predictions of the performance of both binary and M-ary orthogonal signalling over generalized fading channels (with arbitrary fading parameters). Several numerical examples are presented to illustrate the application of the theory, including the investigation into optimal diversity order in energy-sharing communications, characterization of block orthogonal codes with soft-decision decoding (i.e., MFSK may also be viewed as a form of repetition coding) and analysis of MFSK with space (antenna) diversity.
منابع مشابه
Energy Detection of Unknown Signals over Composite multipath/shadowing Fading Channels
In this paper, the performance analysis of an energy detector is exploited over composite multipath/shadowing fading channels, which is modeled by Rayleigh-lognormal (RL) distribution. Based on an approximate channel model which was recently proposed by the author, the RL envelope probability density function (pdf) is approximated by a finite sum of weighted Rayleigh pdfs. Relying on this inter...
متن کاملPerformance Analysis of TDMA Relay Protocols Over Nakagami- Fading
Several time-division multiple-access (TDMA) cooperative wireless relay protocols and their performances have recently been developed by Nabar, Bolcskei, and Kneubuhler. Their work, however, is limited to an upper bound-based performance analysis for Rayleigh fading. We thus provide an exact analysis of two of their protocols in single-relay and multiplerelay networks over independent identical...
متن کاملA unified approach to performance evaluation of switched diversity in independent and correlated fading channels
This paper outlines a unified approach to performance evaluation of a broad class of coherent, differentially coherent and noncoherent digital communication systems with dual-branch switched diversity (SWC) reception over generalized fading channels. The moment generating function (MGF) of the signal power at the output of the SWC combiner and the first-order derivative of the MGF with respect ...
متن کاملUnified analysis of switched diversity systems in independent and correlated fading channels
The moment generating function (MGF) of the signal power at the output of dual-branch switch-and-stay selection diversity (SSD) combiners is derived. The first-order derivative of the MGF with respect to the switching threshold is also derived. These expressions are obtained for the general case of correlated fading and nonidentical diversity branches, and hold for any common fading distributio...
متن کاملNakagami-m Fading Channels
Abstract: This paper is concerned with the analysis of exact symbol error probability (SEP) for cooperative diversity using amplify-and-forward (AF) relaying over independent and non-identical Nakagami-m fading channels. The mathematical formulations for Probability Density Function (pdf) and Moment Generating Function (MGF) of a cooperative link have been derived for calculating symbol error p...
متن کامل